Package: coloc 6.0.0

coloc: Colocalisation Tests of Two Genetic Traits

Performs the colocalisation tests described in Giambartolomei et al (2013) <doi:10.1371/journal.pgen.1004383>, Wallace (2020) <doi:10.1371/journal.pgen.1008720>, Wallace (2021) <doi:10.1371/journal.pgen.1009440>, Pullin and Wallace (2025) <doi:10.1101/2024.08.21.608957>.

Authors:Chris Wallace [aut, cre], Claudia Giambartolomei [aut], Vincent Plagnol [ctb], Tom Willis [aut], Jeffrey Pullin [aut]

coloc_6.0.0.tar.gz
coloc_6.0.0.zip(r-4.5)coloc_6.0.0.zip(r-4.4)coloc_6.0.0.zip(r-4.3)
coloc_6.0.0.tgz(r-4.5-any)coloc_6.0.0.tgz(r-4.4-any)coloc_6.0.0.tgz(r-4.3-any)
coloc_6.0.0.tar.gz(r-4.5-noble)coloc_6.0.0.tar.gz(r-4.4-noble)
coloc_6.0.0.tgz(r-4.4-emscripten)coloc_6.0.0.tgz(r-4.3-emscripten)
coloc.pdf |coloc.html
coloc/json (API)
NEWS

# Install 'coloc' in R:
install.packages('coloc', repos = c('https://chr1swallace.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/chr1swallace/coloc/issues

Pkgdown site:https://chr1swallace.github.io

Datasets:

On CRAN:

Conda:

12.68 score 164 stars 3 packages 916 scripts 2.4k downloads 49 mentions 21 exports 40 dependencies

Last updated 4 days agofrom:cfd4800a77. Checks:1 OK, 8 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 27 2025
R-4.5-winWARNINGMar 27 2025
R-4.5-macWARNINGMar 27 2025
R-4.5-linuxWARNINGMar 27 2025
R-4.4-winWARNINGMar 27 2025
R-4.4-macWARNINGMar 27 2025
R-4.4-linuxWARNINGMar 27 2025
R-4.3-winWARNINGMar 27 2025
R-4.3-macWARNINGMar 27 2025

Exports:annotate_susiecheck_alignmentcheck_datasetcheck.alignmentcheck.datasetcoloc.abfcoloc.bf_bfcoloc.signalscoloc.susiecoloc.susie_bfcredible.setsfindendsfinemap.abffinemap.bffinemap.signalsplot_datasetplot_extended_datasetprocess.datasetrunsusiesensitivitysubset_dataset

Dependencies:clicolorspacecrayondata.tablefansifarverggplot2gluegridExtragtableirlbaisobandlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmixsqpmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppRcppArmadilloreshaperlangscalessusieRtibbleutf8vctrsviridisviridisLitewithr

Coloc: a package for colocalisation analyses

Rendered froma01_intro.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2023-05-12
Started: 2019-07-08

Coloc: data structures

Rendered froma02_data.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2023-05-12
Started: 2021-03-23

Coloc: sensitivity to prior values

Rendered froma04_sensitivity.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2021-06-08
Started: 2019-07-08

Coloc: under a single causal variant assumption

Rendered froma03_enumeration.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2021-06-08
Started: 2019-07-08

Coloc: using SuSiE to relax the single causal variant assumption

Rendered froma06_SuSiE.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2022-05-05
Started: 2021-03-22

Coloc: using variant-specific priros in coloc

Rendered froma07_variant-specific-priors.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2025-03-27
Started: 2025-03-27

DEPRECATED Coloc: relaxing the single causal variant assumption

Rendered froma05_conditioning.Rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2022-03-21
Started: 2019-07-08

Readme and manuals

Help Manual

Help pageTopics
Colocalisation tests of two genetic traits-package coloc-package
annotate susie_rss output for use with coloc_susieannotate_susie
Internal function, approx.bf.estimatesapprox.bf.estimates
Internal function, approx.bf.papprox.bf.p
binomial to linear regression conversionbin2lin
check alignmentcheck.alignment check_alignment
check_datasetcheck.dataset check_dataset
Simulated data to use in testing and vignettes in the coloc packagecoloc_test_data
Fully Bayesian colocalisation analysis using Bayes Factorscoloc.abf
Coloc data through Bayes factorscoloc.bf_bf
Bayesian colocalisation analysis with detailed outputcoloc.detail
Post process a coloc.details result using maskingcoloc.process
Coloc with multiple signals per traitcoloc.signals
run coloc using susie to detect separate signalscoloc.susie
run coloc using susie to detect separate signalscoloc.susie_bf
combine.abfcombine.abf
credible.setscredible.sets
eQTLGen estimated distance densityeqtlgen_density_data
generate conditional summary statsest_cond
estgeno1estgeno.1.cse estgeno.1.ctl
Pick out snp with most extreme Z scorefind.best.signal
trim a dataset to central peak(s)findends
trim a dataset to only peak(s)findpeaks
Bayesian finemapping analysisfinemap.abf
Finemap data through Bayes factorsfinemap.bf
Finemap multiple signals in a single datasetfinemap.signals
logbf 2 pplogbf_to_pp
logdifflogdiff
logsumlogsum
find the next most significant SNP, conditioning on a list of sigsnpsmap_cond
find the next most significant SNP, masking a list of sigsnpsmap_mask
plot a coloc datasetplot_dataset
Draw extended plot of summary statistics for two coloc datasetsplot_extended_dataset
plot a coloc_abf objectplot.coloc_abf
print.coloc_abfprint.coloc_abf
process.datasetprocess.dataset
Run susie on a single coloc-structured datasetrunsusie
Estimate trait variance, internal functionsdY.est
Prior sensitivity for colocsensitivity
subset_datasetsubset_dataset
Var.dataVar.data
Var.dataVar.data.cc